Unexpected seasonality in quantity and composition of Amazon rainforest air reactivity
نویسندگان
چکیده
The hydroxyl radical (OH) removes most atmospheric pollutants from air. The loss frequency of OH radicals due to the combined effect of all gas-phase OH reactive species is a measureable quantity termed total OH reactivity. Here we present total OH reactivity observations in pristine Amazon rainforest air, as a function of season, time-of-day and height (0-80 m). Total OH reactivity is low during wet (10 s(-1)) and high during dry season (62 s(-1)). Comparison to individually measured trace gases reveals strong variation in unaccounted for OH reactivity, from 5 to 15% missing in wet-season afternoons to mostly unknown (average 79%) during dry season. During dry-season afternoons isoprene, considered the dominant reagent with OH in rainforests, only accounts for ∼20% of the total OH reactivity. Vertical profiles of OH reactivity are shaped by biogenic emissions, photochemistry and turbulent mixing. The rainforest floor was identified as a significant but poorly characterized source of OH reactivity.
منابع مشابه
Greenhouse Gas Induced Changes in the Seasonal Cycle of the Amazon Basin in Coupled Climate-Vegetation Regional Model
Previous work suggests that changes in seasonality could lead to a 70% reduction in the extent of the Amazon rainforest. The primary cause of the dieback of the rainforest is a lengthening of the dry season due to a weakening of the large-scale tropical circulation. Here we examine these changes in the seasonal cycle. Under present day conditions the Amazon climate is characterized by a zonal s...
متن کاملSeasonal carbon dynamics and water fluxes in an Amazon rainforest
Satellite-based observations indicate that seasonal patterns in canopy greenness and productivity in the Amazon are negatively correlated with precipitation, with increased greenness occurring during the dry months. Flux tower measurements indicate that the canopy greening that occurs during the dry season is associated with increases in net ecosystem productivity (NEP) and evapotranspiration (...
متن کاملSource Apportionment Of High Reactive Volatile Organic Compounds In a Region With The Massive Hydrocarbon Processing Industries
In the Persian Gulf region, conditions are highly favorable for ozone air pollution and the region is a hot spot of photochemical smog. The vast activities in processing oil and gas play a major role in it. It was found that the elevated concentrations of reactive hydrocarbons co-emitted with nitrogen oxides from Hydrocarbon Processing facilities lead to substantial ozone production. South Pars...
متن کاملThe Amphibians and Reptiles of the Estación Biológica Jatun Sacha in the Lowland Rainforest of Amazonian Ecuador: a 20-year Record
The amphibian and reptile fauna within a small area in a lowland rainforest fragment reserve in Amazonian Ecuador was intensively surveyed over an initial 2year period via removal sampling (1986–88), coinciding with the construction of a road through the area and a subsequent surge of increased forest conversion and fragmentation in surrounding areas. A time-constrained transect sampling techni...
متن کاملA Reactivity Based Emission Inventory for the South Pars and Its Implication for Ozone Pollution Control
The South Pars zone in Iran encompasses the largest gas refineries and petrochemical complexes in the world. In the South Pars zone, elevated concentrations of reactive hydrocarbons co-emitted with nitrogen oxides from industrial facilities lead to substantial ozone production downwind. To understand the role of these emissions on the ozone formation and, to formulate appropriate control st...
متن کامل